The orbital stability of the periodic traveling wave solutions to the defocusing complex modified Korteweg–de Vries equation

نویسندگان

چکیده

The stability of the elliptic solutions to defocusing complex modified Korteweg–de Vries (cmKdV) equation is studied. Using integrability cmKdV equation, we prove spectral solutions. We show that one special linear combination first seven conserved quantities produces a Lyapunov functional, which implies are orbitally stable with respect subharmonic perturbations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Stability of Periodic Traveling Wave Solutions of the Generalized Korteweg-de Vries Equation

In this paper, we study the orbital stability for a four-parameter family of periodic stationary traveling wave solutions to the generalized Korteweg-de Vries (gKdV) equation ut = uxxx + f(u)x. In particular, we derive sufficient conditions for such a solution to be orbitally stable in terms of the Hessian of the classical action of the corresponding traveling wave ordinary differential equatio...

متن کامل

Stability of traveling wave solutions to the Whitham equation

Article history: Received 21 December 2013 Received in revised form 19 April 2014 Accepted 23 April 2014 Available online 14 May 2014 Communicated by C.R. Doering

متن کامل

Some new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation

‎In this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-‎dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method‎, homogeneous balance method, extended F-expansion method‎. ‎By ‎using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...

متن کامل

The stability analysis of the periodic traveling wave solutions of the mKdV equation

The stability of periodic solutions of partial differential equations has been an area of increasing interest in the last decade. In this paper, we derive all periodic traveling wave solutions of the focusing and defocusing mKdV equations. We show that in the defocusing case all such solutions are orbitally stable with respect to subharmonic perturbations: perturbations that are periodic with p...

متن کامل

some new exact traveling wave solutions one dimensional modified complex ginzburg- landau equation

‎in this paper‎, ‎we obtain exact solutions involving parameters of some nonlinear pdes in mathmatical physics; namely the one-‎dimensional modified complex ginzburg-landau equation by using the $ (g^{'}/g) $ expansion method‎, homogeneous balance method, extended f-expansion method‎. ‎by ‎using homogeneous balance principle and the extended f-expansion, more periodic wave solutions expres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinear Analysis-theory Methods & Applications

سال: 2023

ISSN: ['1873-5215', '0362-546X']

DOI: https://doi.org/10.1016/j.na.2022.113155